Structural characteristics of food protein-originating di- and tripeptides using principal component analysis
نویسندگان
چکیده
منابع مشابه
Internal Traits of Eggs and Their Relationship to Shank Feathering in Chicken Using Principal Component Analysis
Chicken eggs represent an important source of protein to the growing human population and also supply repositories of unique genes that could be used worldwide. The inheritance of shank feathering trait is dominant upon non-feathering shank trait in chicken which is based on two factors: pti-1L and pti-1B that are located on Chromosomes 13, 15, and 24. Using 185 fertile eggs collected from two ...
متن کاملdemonstrating buried channels using principal component analysis
spectral decomposition of time series has a significant role in seismic data processing and interpretation. since the earth acts as a low-pass filter, it changes frequency content of passing seismic waves. conventional representing methods of signals in time domain and frequency domain cannot show time and frequency information simultaneously. time-frequency transforms upgraded spectral decompo...
متن کاملMultiresolution using principal component analysis
This paper proposes Principal Component Analysis (PCA) to find adaptive bases for multiresolution. An input image is decomposed into components (compressed images) which are uncorrelated and have maximum l2 energy. With only minor modification, a single layer linear network using the Generalized Hebbian Algorithm (GHA) is used for multiresolution PCA. The decomposition has been successfully app...
متن کاملPrincipal Component Analysis using R
This tutorial is designed to give the reader a short overview of Principal Component Analysis (PCA) using R. PCA is a useful statistical method that has found application in a variety of fields and is a common technique for finding patterns in data of high dimension. Consider we are confronted with the following situation: The data, we want to work with, are in form of a matrix (xij)i=1...N,j=1...
متن کاملFast Protein Superfamily Classification Using Principal Component Null Space Analysis
The protein family classification problem, which consists of determining the family memberships of given unknown protein sequences, is very important for a biologist for many practical reasons, such as drug discovery, prediction of molecular functions and medical diagnosis. Neural networks and bayesian methods have performed well on the protein classification problem, achieving accuracy ranging...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Food Research and Technology
سال: 2018
ISSN: 1438-2377,1438-2385
DOI: 10.1007/s00217-018-3087-3